.. _program_listing_file_src_tap_algorithms_ballistics.cpp: Program Listing for File ballistics.cpp ======================================= |exhale_lsh| :ref:`Return to documentation for file ` (``src/tap/algorithms/ballistics.cpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp /* * Copyright (c) 2020-2021 Advanced Robotics at the University of Washington * * This file is part of Taproot. * * Taproot is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Taproot is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Taproot. If not, see . */ #include "ballistics.hpp" #include "math_user_utils.hpp" namespace tap::algorithms::ballistics { bool computeTravelTime( const modm::Vector3f &targetPosition, float bulletVelocity, float *travelTime, float *turretPitch, const float pitchAxisOffset) { float horizontalDist = hypot(targetPosition.x, targetPosition.y) + pitchAxisOffset; float bulletVelocitySquared = powf(bulletVelocity, 2); float sqrtTerm = powf(bulletVelocitySquared, 2) - ACCELERATION_GRAVITY * (ACCELERATION_GRAVITY * powf(horizontalDist, 2) + 2 * targetPosition.z * bulletVelocitySquared); if (sqrtTerm < 0) { return false; } // Equation obtained from the wikipedia page on projectile motion *turretPitch = -atan2(bulletVelocitySquared - sqrt(sqrtTerm), (ACCELERATION_GRAVITY * horizontalDist)); // For vertical aiming, y_f = v_0*t - 0.5*g*t^2 -> t = (v_0 - sqrt((v_0)^2 - 2*g*y_f))/g // We use the negative root since the collision will happen on the first instance that the // trajectory reaches y_f if (compareFloatClose(*turretPitch, 0, 1E-2)) { float sqrtTerm = powf(bulletVelocity, 2.0f) - 2 * ACCELERATION_GRAVITY * targetPosition.z; // If there isn't a real-valued root, there is no time where we can reach the target with // the given assumptions if (sqrtTerm < 0) { return false; } *travelTime = (bulletVelocity - sqrt(sqrtTerm)) / ACCELERATION_GRAVITY; return true; } // Equation obtained from the wikipedia page on projectile motion *travelTime = horizontalDist / (bulletVelocity * cos(*turretPitch)); return !isnan(*turretPitch) && !isnan(*travelTime); } bool findTargetProjectileIntersection( const AbstractKinematicState &targetInitialState, float bulletVelocity, uint8_t numIterations, float *turretPitch, float *turretYaw, float *projectedTravelTime, const float pitchAxisOffset) { modm::Vector3f projectedTargetPosition = targetInitialState.projectForward(0); if (projectedTargetPosition.x == 0 && projectedTargetPosition.y == 0 && projectedTargetPosition.z == 0) { return false; } for (int i = 0; i < numIterations; i++) { if (!computeTravelTime( projectedTargetPosition, bulletVelocity, projectedTravelTime, turretPitch, pitchAxisOffset)) { return false; } projectedTargetPosition = targetInitialState.projectForward(*projectedTravelTime); } *turretYaw = atan2f(projectedTargetPosition.y, projectedTargetPosition.x); return !isnan(*turretPitch) && !isnan(*turretYaw); } } // namespace tap::algorithms::ballistics