.. _program_listing_file_src_tap_algorithms_MahonyAHRS.cpp: Program Listing for File MahonyAHRS.cpp ======================================= |exhale_lsh| :ref:`Return to documentation for file ` (``src/tap/algorithms/MahonyAHRS.cpp``) .. |exhale_lsh| unicode:: U+021B0 .. UPWARDS ARROW WITH TIP LEFTWARDS .. code-block:: cpp //============================================================================================= // MahonyAHRS.c //============================================================================================= // // Madgwick's implementation of Mayhony's AHRS algorithm. // See: http://www.x-io.co.uk/open-source-imu-and-ahrs-algorithms/ // // From the x-io website "Open-source resources available on this website are // provided under the GNU General Public Licence unless an alternative licence // is provided in source." // // Date Author Notes // 29/09/2011 SOH Madgwick Initial release // 02/10/2011 SOH Madgwick Optimised for reduced CPU load // 09/06/2020 Matthew Arnold Update style, use safer casting // // Algorithm paper: // http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4608934&url=http%3A%2F%2Fieeexplore.ieee.org%2Fstamp%2Fstamp.jsp%3Ftp%3D%26arnumber%3D4608934 // //============================================================================================= //------------------------------------------------------------------------------------------- // Header files #include "MahonyAHRS.h" #include #include #include //------------------------------------------------------------------------------------------- // Definitions #define DEFAULT_SAMPLE_FREQ 500.0f // sample frequency in Hz #define twoKpDef (2.0f * 0.5f) // 2 * proportional gain #define twoKiDef (2.0f * 0.0f) // 2 * integral gain //============================================================================================ // Functions static float fastInvSqrt(float x); //------------------------------------------------------------------------------------------- // AHRS algorithm update Mahony::Mahony() { twoKp = twoKpDef; // 2 * proportional gain (Kp) twoKi = twoKiDef; // 2 * integral gain (Ki) q0 = 1.0f; q1 = 0.0f; q2 = 0.0f; q3 = 0.0f; integralFBx = 0.0f; integralFBy = 0.0f; integralFBz = 0.0f; anglesComputed = 0; invSampleFreq = 1.0f / DEFAULT_SAMPLE_FREQ; roll = 0.0f; pitch = 0.0f; yaw = 0.0f; } void Mahony::update( float gx, float gy, float gz, float ax, float ay, float az, float mx, float my, float mz) { float recipNorm; float qa, qb, qc; // Use IMU algorithm if magnetometer measurement invalid // (avoids NaN in magnetometer normalisation) if ((mx == 0.0f) && (my == 0.0f) && (mz == 0.0f)) { updateIMU(gx, gy, gz, ax, ay, az); return; } // Convert gyroscope degrees/sec to radians/sec gx *= 0.0174533f; gy *= 0.0174533f; gz *= 0.0174533f; // Compute feedback only if accelerometer measurement valid // (avoids NaN in accelerometer normalisation) if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = fastInvSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; // Normalise magnetometer measurement recipNorm = fastInvSqrt(mx * mx + my * my + mz * mz); mx *= recipNorm; my *= recipNorm; mz *= recipNorm; float q0q0, q0q1, q0q2, q0q3, q1q1, q1q2, q1q3, q2q2, q2q3, q3q3; // Auxiliary variables to avoid repeated arithmetic q0q0 = q0 * q0; q0q1 = q0 * q1; q0q2 = q0 * q2; q0q3 = q0 * q3; q1q1 = q1 * q1; q1q2 = q1 * q2; q1q3 = q1 * q3; q2q2 = q2 * q2; q2q3 = q2 * q3; q3q3 = q3 * q3; float hx, hy, bx, bz; // Reference direction of Earth's magnetic field hx = 2.0f * (mx * (0.5f - q2q2 - q3q3) + my * (q1q2 - q0q3) + mz * (q1q3 + q0q2)); hy = 2.0f * (mx * (q1q2 + q0q3) + my * (0.5f - q1q1 - q3q3) + mz * (q2q3 - q0q1)); bx = sqrtf(hx * hx + hy * hy); bz = 2.0f * (mx * (q1q3 - q0q2) + my * (q2q3 + q0q1) + mz * (0.5f - q1q1 - q2q2)); float halfvx, halfvy, halfvz, halfwx, halfwy, halfwz; float halfex, halfey, halfez; // Estimated direction of gravity and magnetic field halfvx = q1q3 - q0q2; halfvy = q0q1 + q2q3; halfvz = q0q0 - 0.5f + q3q3; halfwx = bx * (0.5f - q2q2 - q3q3) + bz * (q1q3 - q0q2); halfwy = bx * (q1q2 - q0q3) + bz * (q0q1 + q2q3); halfwz = bx * (q0q2 + q1q3) + bz * (0.5f - q1q1 - q2q2); // Error is sum of cross product between estimated direction // and measured direction of field vectors halfex = (ay * halfvz - az * halfvy) + (my * halfwz - mz * halfwy); halfey = (az * halfvx - ax * halfvz) + (mz * halfwx - mx * halfwz); halfez = (ax * halfvy - ay * halfvx) + (mx * halfwy - my * halfwx); // Compute and apply integral feedback if enabled if (twoKi > 0.0f) { // integral error scaled by Ki integralFBx += twoKi * halfex * invSampleFreq; integralFBy += twoKi * halfey * invSampleFreq; integralFBz += twoKi * halfez * invSampleFreq; gx += integralFBx; // apply integral feedback gy += integralFBy; gz += integralFBz; } else { integralFBx = 0.0f; // prevent integral windup integralFBy = 0.0f; integralFBz = 0.0f; } // Apply proportional feedback gx += twoKp * halfex; gy += twoKp * halfey; gz += twoKp * halfez; } // Integrate rate of change of quaternion gx *= (0.5f * invSampleFreq); // pre-multiply common factors gy *= (0.5f * invSampleFreq); gz *= (0.5f * invSampleFreq); qa = q0; qb = q1; qc = q2; q0 += (-qb * gx - qc * gy - q3 * gz); q1 += (qa * gx + qc * gz - q3 * gy); q2 += (qa * gy - qb * gz + q3 * gx); q3 += (qa * gz + qb * gy - qc * gx); // Normalise quaternion recipNorm = fastInvSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; anglesComputed = 0; } //------------------------------------------------------------------------------------------- // IMU algorithm update void Mahony::updateIMU(float gx, float gy, float gz, float ax, float ay, float az) { float recipNorm; float qa, qb, qc; // Convert gyroscope degrees/sec to radians/sec gx *= 0.0174533f; gy *= 0.0174533f; gz *= 0.0174533f; // Compute feedback only if accelerometer measurement valid // (avoids NaN in accelerometer normalisation) if (!((ax == 0.0f) && (ay == 0.0f) && (az == 0.0f))) { // Normalise accelerometer measurement recipNorm = fastInvSqrt(ax * ax + ay * ay + az * az); ax *= recipNorm; ay *= recipNorm; az *= recipNorm; float halfvx, halfvy, halfvz; float halfex, halfey, halfez; // Estimated direction of gravity halfvx = q1 * q3 - q0 * q2; halfvy = q0 * q1 + q2 * q3; halfvz = q0 * q0 - 0.5f + q3 * q3; // Error is sum of cross product between estimated // and measured direction of gravity halfex = (ay * halfvz - az * halfvy); halfey = (az * halfvx - ax * halfvz); halfez = (ax * halfvy - ay * halfvx); // Compute and apply integral feedback if enabled if (twoKi > 0.0f) { // integral error scaled by Ki integralFBx += twoKi * halfex * invSampleFreq; integralFBy += twoKi * halfey * invSampleFreq; integralFBz += twoKi * halfez * invSampleFreq; gx += integralFBx; // apply integral feedback gy += integralFBy; gz += integralFBz; } else { integralFBx = 0.0f; // prevent integral windup integralFBy = 0.0f; integralFBz = 0.0f; } // Apply proportional feedback gx += twoKp * halfex; gy += twoKp * halfey; gz += twoKp * halfez; } // Integrate rate of change of quaternion gx *= (0.5f * invSampleFreq); // pre-multiply common factors gy *= (0.5f * invSampleFreq); gz *= (0.5f * invSampleFreq); qa = q0; qb = q1; qc = q2; q0 += (-qb * gx - qc * gy - q3 * gz); q1 += (qa * gx + qc * gz - q3 * gy); q2 += (qa * gy - qb * gz + q3 * gx); q3 += (qa * gz + qb * gy - qc * gx); // Normalise quaternion recipNorm = fastInvSqrt(q0 * q0 + q1 * q1 + q2 * q2 + q3 * q3); q0 *= recipNorm; q1 *= recipNorm; q2 *= recipNorm; q3 *= recipNorm; anglesComputed = 0; } //------------------------------------------------------------------------------------------- void Mahony::computeAngles() { roll = atan2f(q0 * q1 + q2 * q3, 0.5f - q1 * q1 - q2 * q2); pitch = asinf(-2.0f * (q1 * q3 - q0 * q2)); yaw = atan2f(q1 * q2 + q0 * q3, 0.5f - q2 * q2 - q3 * q3); anglesComputed = 1; } template To reinterpretCopy(From from) { static_assert(sizeof(From) == sizeof(To), "can only reinterpret-copy types of the same size"); To result; memcpy(static_cast(&result), static_cast(&from), sizeof(To)); return result; } float fastInvSqrt(float x) { static_assert(sizeof(float) == 4, "fast inverse sqrt requires 32-bit float"); float halfx = 0.5f * x; float y = x; int32_t i = reinterpretCopy(y); i = 0x5f3759df - (i >> 1); y = reinterpretCopy(i); y = y * (1.5f - (halfx * y * y)); return y; } //============================================================================================ // END OF CODE //============================================================================================